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If a very large number of atoms are
involved, as in the case of a real
solid, then the energy levels will lie
on a quasi- continuous scale and one
therefore speaks of energy bands.
The broadening of the band depends
on the overlap of the wavefunctions
concerned. Thus for the deep lying
levels the broadening is small, and
these ``core levels'' retain their
atomic shell-like character even in
the solid. For the highest occupied
levels, on the other hand, the
broadening is so large that the s-, p-
and where present, d-levels merge
into a single band.

From Bonds to Bands 



Hydrogen Molecule
Consider two hydrogen atoms to form into a molecule, each with an electron
in the 1s ground state, their wavefuncBons are 𝜓A and 𝜓B, respecBvely.

As the atoms are brought together, their wavefuncBons overlap. We con-
sider the two combinaBons ψA ± ψB. Each combinaBon shares an electron
with the two protons, but an electron in the state ψA + ψB will have a some-
what lower energy than in the state ψA − ψB.

Orbits that enclose filled states are electron orbits. Orbits that en-
close empty states are hole orbits. Orbits that move from zone to zone
without closing are open orbits.

CALCULATION OF ENERGY BANDS

Wigner and Seitz, who in 1933 performed the first serious band calcula-
tions, refer to afternoons spent on the manual desk calculators of those days,
using one afternoon for a trial wavefunction. Here we limit ourselves to three
introductory methods: the tight-binding method, useful for interpolation; the
Wigner-Seitz method, useful for the visualization and understanding of the 
alkali metals; and the pseudopotential method, utilizing the general theory 
of Chapter 7, which shows the simplicity of many problems.

Tight Binding Method for Energy Bands

Let us start with neutral separated atoms and watch the changes in the
atomic energy levels as the charge distributions of adjacent atoms overlap
when the atoms are brought together to form a crystal. Consider two hydrogen
atoms, each with an electron in the 1s ground state. The wavefunctions !A, !B

on the separated atoms are shown in Fig. 16a.
As the atoms are brought together, their wavefunctions overlap. We con-

sider the two combinations !A ! !B. Each combination shares an electron
with the two protons, but an electron in the state !A " !B will have a some-
what lower energy than in the state !A # !B.

In !A " !B the electron spends part of the time in the region midway 
between the two protons, and in this region it is in the attractive potential of
both protons at once, thereby increasing the binding energy. In !A # !B the
probability density vanishes midway between the nuclei; an extra binding does
not appear.
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!A + !B !A – !B

!B!A

Figure 16 (a) Schematic drawing of wavefunctions of electrons on two hydrogen atoms at large
separation. (b) Ground state wavefunction at closer separation. (c) Excited state wavefunction.
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The 1s band of a ring of 20
hydrogen atoms calculated
by the Bght-binding method

As two atoms are brought together, two separated energy levels are
formed for each level of the isolated atom. For N atoms, N orbitals are formed
for each orbital of the isolated atom (Fig. 17).

As free atoms are brought together, the coulomb interaction between the
atom cores and the electron splits the energy levels, spreading them into
bands. Each state of given quantum number of the free atom is spread in the
crystal into a band of energies. The width of the band is proportional to the
strength of the overlap interaction between neighboring atoms.

There will also be bands formed from p, d, . . . states (l ! 1, 2, . . .) of the
free atoms. States degenerate in the free atom will form different bands. Each
will not have the same energy as any other band over any substantial range of
the wavevector. Bands may coincide in energy at certain values of k in the 
Brillouin zone.

The approximation that starts out from the wavefunctions of the free atoms
is known as the tight-binding approximation or the LCAO (linear combination
of atomic orbitals) approximation. The approximation is quite good for the inner
electrons of atoms, but it is not often a good description of the conduction elec-
trons themselves. It is used to describe approximately the d bands of the transi-
tion metals and the valence bands of diamondlike and inert gas crystals.

Suppose that the ground state of an electron moving in the potential 
U(r) of an isolated atom is !(r), an s state. The treatment of bands arising from
degenerate (p, d, . . .) atomic levels is more complicated. If the influence of
one atom on another is small, we obtain an approximate wavefunction for one
electron in the whole crystal by taking

(4)"k(r) ! !
j

 Ck j!(r " rj) ,

9  Fermi Surfaces and Metals 233

0

–4.2

–3.4

–2.6

–1.8

–1.0

–0.2

0.6

1.4

2.2

0 1 2 3
Nearest-neighbor distance, in Bohr radii

4 5

E
ne

rg
y,

 in
 R

yd
be

rg
s

Free
atom

Figure 17 The 1s band of a ring of 20 
hydrogen atoms; the one-electron energies
are calculated in the tight-binding approxi-
mation with the nearest-neighbor overlap 
integral of Eq. (9).
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As free atoms are brought together, the coulomb interacBon between the
atom cores and the electron splits the energy levels, spreading them into
bands. Each state of given quantum number of the free atom is spread in
the crystal into a band of energies. The width of the band is proporBonal to
the strength of the overlap interacBon between neighboring atoms.
There will also be bands formed from p, d, . . . states (l = 1, 2, . . .) of the free
atoms. States degenerate in the free atom will form different bands. Each
will not have the same energy as any other band over any substanBal range
of the wavevector. Bands may coincide in energy at certain values of k in the
Brillouin zone.



The Bght binding approximaBon is also called the linear combinaBon of
atomic orbital (LCAO) approximaBon in which the one electron wavefuncBon
𝜓k(r) is built from the electron wavefuncBon of an isolated atom, 𝜑(r).

This function is of the Bloch form if for  a crystal of N atoms:
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Figure 17 The 1s band of a ring of 20 
hydrogen atoms; the one-electron energies
are calculated in the tight-binding approxi-
mation with the nearest-neighbor overlap 
integral of Eq. (9).
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where the sum is over all laUce points. 

where the sum is over all lattice points. We assume the primitive basis contains
one atom. This function is of the Bloch form (7.7) if Ck j ! N"1/2 eik#r, which
gives, for a crystal of N atoms,

(5)

We prove (5) is of the Bloch form. Consider a translation T connecting
two lattice points:

(6)

exactly the Bloch condition.
We find the first-order energy by calculating the diagonal matrix elements

of the hamiltonian of the crystal:

(7)

where !m !(r " rm). Writing !m ! rm " rj,

(8)

We now neglect all integrals in (8) except those on the same atom and
those between nearest neighbors connected by !. We write

(9)

and we have the first-order energy, provided !k|k" ! 1:

(10)

The dependence of the overlap energy " on the interatomic separation #
can be evaluated explicitly for two hydrogen atoms in 1s states. In rydberg 
energy units, we have

(11)

where The overlap energy decreases exponentially with the 
separation.

a0 ! !2/me2.

"(Ry) ! 2(1 $ #/a0) exp ("#/a0) ,

Ry ! me4/2!2,

!k #H #k" ! "$ " " $ 
m

exp("ik ! !m) ! %k .

% dV !*(r)H!(r) ! "$ ;  % dV !*(r " !)H!(r) ! "" ;

!k #H #k" ! $
m

 exp("ik ! !m) % dV !*(r " !m)H!(r) .

"

!k#H #k" ! N"1$ 
j
$
m

 exp[ik ! (rj " rm)] !!m#H #!j" ,

 ! exp(ik ! T) &k(r) ,

 ! exp(ik ! T) N"1/2 $
j

 exp[ik ! (rj " T)]![r " (rj " T)]

&k(r $ T)  ! N"1/2 $
j

  exp(ik ! rj)!(r $ T " rj)

&k(r) ! N"1'2 $ 
j

exp(ik ! rj)!(r " rj) .

234
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where                           .      WriBng      
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We consider the integrals over the same atom and the nearest
neighbor atoms only, then

we have

If ,  the effecBve mass m*= ℏ2/2𝛾a2

where the sum is over all lattice points. We assume the primitive basis contains
one atom. This function is of the Bloch form (7.7) if Ck j ! N"1/2 eik#r, which
gives, for a crystal of N atoms,

(5)

We prove (5) is of the Bloch form. Consider a translation T connecting
two lattice points:

(6)

exactly the Bloch condition.
We find the first-order energy by calculating the diagonal matrix elements

of the hamiltonian of the crystal:

(7)

where !m !(r " rm). Writing !m ! rm " rj,

(8)

We now neglect all integrals in (8) except those on the same atom and
those between nearest neighbors connected by !. We write

(9)

and we have the first-order energy, provided !k|k" ! 1:

(10)

The dependence of the overlap energy " on the interatomic separation #
can be evaluated explicitly for two hydrogen atoms in 1s states. In rydberg 
energy units, we have

(11)

where The overlap energy decreases exponentially with the 
separation.

a0 ! !2/me2.

"(Ry) ! 2(1 $ #/a0) exp ("#/a0) ,

Ry ! me4/2!2,

!k #H #k" ! "$ " " $ 
m

exp("ik ! !m) ! %k .

% dV !*(r)H!(r) ! "$ ;  % dV !*(r " !)H!(r) ! "" ;

!k #H #k" ! $
m

 exp("ik ! !m) % dV !*(r " !m)H!(r) .

"

!k#H #k" ! N"1$ 
j
$
m

 exp[ik ! (rj " rm)] !!m#H #!j" ,

 ! exp(ik ! T) &k(r) ,

 ! exp(ik ! T) N"1/2 $
j

 exp[ik ! (rj " T)]![r " (rj " T)]

&k(r $ T)  ! N"1/2 $
j

  exp(ik ! rj)!(r $ T " rj)

&k(r) ! N"1'2 $ 
j

exp(ik ! rj)!(r " rj) .

234

ch09.qxd  8/13/04  4:24 PM  Page 234
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so that (10) becomes
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Thus the energies are confined to a band of width 12!. The weaker the over-
lap, the narrower is the energy band. A constant energy surface is shown 
in Fig. 15. For ka ! 1, "k "# " 6! # !k2a2. The effective mass is 

When the overlap integral ! is small, the band is narrow and the effec-
tive mass is high.

We considered one orbital of each free atom and obtained one band "k.
The number of orbitals in the band that corresponds to a nondegenerate
atomic level is 2N, for N atoms. We see this directly: values of k within the first
Brillouin zone define independent wavefunctions. The simple cubic zone has
"$/a $ kx $ $/a, etc. The zone volume is 8$3/a3. The number of orbitals
(counting both spin orientations) per unit volume of k space is V/4$3, so that
the number of orbitals is 2V/a3. Here V is the volume of the crystal, and 1/a3 is
the number of atoms per unit volume. Thus there are 2N orbitals.

For the fcc structure with eight nearest neighbors,

(14)

For the fcc structure with 12 nearest neighbors,

(15)

A constant energy surface is shown in Fig. 18.
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Thus the energies are confined to a band of width 12𝛾. The weaker 
the overlap, the narrower is the energy band. 

When the overlap integral 𝛾 is small, the band is narrow and the
effecBve mass is high.
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For the bcc structure with eight nearest neighbors,

For the fcc structure with twelve nearest neighbors,

The Bght-binding (or LCAO) approximaBon is quite good for inner
electrons of atoms, but it is not o[en good descripBon for the conducBon
electrons. It is used to describe approximately the d bands of transiBon
metals and the valence bands of diamondlike and inert gas crystals.

A constant energy surface of an fcc
crystal structure in the nearest
neighbor Bght-binding approximaBon.
The surface shown has ϵ = − α + 2∣γ∣.
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Wigner Seitz Method

With P = −iℏ𝝯, we have

A Bloch funcBon saBsfies the wave equaBon

Wigner-Seitz Method

Wigner and Seitz showed that for the alkali metals there is no inconsis-
tency between the electron wavefunctions of free atoms and the nearly free
electron model of the band structure of a crystal. Over most of a band the 
energy may depend on the wavevector nearly as for a free electron. However,
the Bloch wavefunction, unlike a plane wave, will pile up charge on the posi-
tive ion cores as in the atomic wavefunction.

A Bloch function satisfies the wave equation

(16)

With grad, we have

thus the wave equation (16) may be written as an equation for uk:

(17)

At k ! 0 we have !0 ! u0(r), where u0(r) has the periodicity of the lattice, sees
the ion cores, and near them will look like the wavefunction of the free atom.

It is much easier to find a solution at k ! 0 than at a general k, because at
k ! 0 a nondegenerate solution will have the full symmetry of U(r), that is, of
the crystal. We can then use u0(r) to construct the approximate solution

(18)

This is of the Bloch form, but u0 is not an exact solution of (17): it is a solution
only if we drop the term in k!p. Often this term is treated as a perturbation, as
in Problem 8. The k!p perturbation theory developed there is especially useful
in finding the effective mass m* at a band edge.

Because it takes account of the ion core potential the function (18) is a
much better approximation than a plane wave to the correct wavefunction.
The energy of the approximate solution depends on k as exactly as
for the plane wave, even though the modulation represented by u0(r) may be
very strong. Because u0 is a solution of

(19)

the function (18) has the energy expectation value The 
function u0(r) often will give us a good picture of the charge distribution
within a cell.

"0 " (!2k2/2m).

! 1
2m p2

 " U(r)" u0(r) ! "0 u0(r) ,

(!k)2/2m,

!k ! exp(ik ! r)u0(r) .

! 1
2m (p " !k)2

 " U(r)" uk(r) ! "kuk(r) .

p2 eik!ruk(r) ! (!k)2 eik!r uk(r) " eik!r (2!k ! p)uk(r) " eik!r p2uk(r) ;

p eik !r uk(r) ! !k eik!r uk(r) " eik!r puk(r) ;

p " #i!

! 1
2m p2

 " U(r)" eik!ruk(r) ! "k eik!ruk(r) .
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So,	

At k = 0 we have ψ0 = u0(r), where u0(r) has the periodicity of the
laUce, sees the ion cores, and near them will look like the
wavefuncBon of the free atom.



We then approximate the exact wavefunction 𝜓k with u0(r) ,

for	k ≠	0,

bare ions

solid
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 " U(r)" u0(r) ! "0 u0(r) ,

(!k)2/2m,

!k ! exp(ik ! r)u0(r) .

! 1
2m (p " !k)2

 " U(r)" uk(r) ! "kuk(r) .

p2 eik!ruk(r) ! (!k)2 eik!r uk(r) " eik!r (2!k ! p)uk(r) " eik!r p2uk(r) ;

p eik !r uk(r) ! !k eik!r uk(r) " eik!r puk(r) ;

p " #i!

! 1
2m p2

 " U(r)" eik!ruk(r) ! "k eik!ruk(r) .
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ϵk =

In a spherical approximaBon to the shape of the smallest Wigner-
Seitz cell we use the Wigner-Seitz boundary condiBon (dψ/dr)r0 = 0 ,
where r0 is the radius of a sphere equal in volume to a primiBve cell
of the laUce.



The stability of the simple metals with respect to free atoms is
caused by the lowering of the energy of the Bloch orbital with k = 0
in the crystal.

Wigner and Seitz developed a simple and fairly accurate method of calcu-
lating u0(r). Figure 19 shows the Wigner-Seitz wavefunction for k ! 0 in the
3s conduction band of metallic sodium. The function is practically constant
over 0.9 of the atomic volume. To the extent that the solutions for higher k
may be approximated by exp(ik " r)u0(r), the wavefunctions in the conduction
band will be similar to plane waves over most of the atomic volume, but in-
crease markedly and oscillate within the ion core.

Cohesive Energy. The stability of the simple metals with respect to free
atoms is caused by the lowering of the energy of the Bloch orbital with k ! 0
in the crystal compared to the ground valence orbital of the free atom. The 
effect is illustrated in Fig. 19 for sodium and in Fig. 20 for a linear periodic 
potential of attractive square wells. The ground orbital energy is much lower
(because of lower kinetic energy) at the actual spacing in the metal than for
isolated atoms.

A decrease in ground orbital energy will increase the binding. The decrease
in ground orbital energy is a consequence of the change in the boundary condi-
tion on the wavefunction: The Schrödinger boundary condition for the free
atom is !(r) → 0 as r → . In the crystal the k ! 0 wavefunction u0(r) has the
symmetry of the lattice and is symmetric about r ! 0. To have this, the normal
derivative of ! must vanish across every plane midway between adjacent atoms.

!
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0

0 1 2
r (Bohr units)

3 4

!

Metal, k = 0

Free atom

Metal, k at Brillouin
zone boundary

Figure 19 Radial wavefunctions for the 3s orbital of free sodium atom and for the 3s conduction
band in sodium metal. The wavefunctions, which are not normalized here, are found by integrat-
ing the Schrödinger equation for an electron in the potential well of an Na# ion core. For the free
atom the wavefunction is integrated subject to the usual Schrödinger boundary condition !(r) → 0
as r → ; the energy eigenvalue is $5.15 eV. The wavefunction for wavevector k ! 0 in the metal
is subject to the Wigner-Seitz boundary condition that d!/dr ! 0 when r is midway between
neighboring atoms; the energy of this orbital is $8.2 eV, considerably lower than for the free 
atom. The orbitals at the zone boundary are not filled in sodium; their energy is #2.7 eV. (After 
E. Wigner and F. Seitz.)
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For a solid, the many-electron Hamiltonian whose Schrödinger wave
equaBon must be solved is
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This equals H0 of (2.10). 

The first term in the Hamiltonian is the operator representing the kinetic energy 

of all the electrons. Each different i corresponds to a different electron The second 

term is the potential energy of interaction of all of the electrons with all of the 

nuclei, and rai is the distance from the ath nucleus to the ith electron. This 

potential energy of interaction is due to the Coulomb forces. Za is the atomic 

number of the nucleus at a. The third term is the Coulomb potential energy of 

interaction between the nuclei. Rab is the distance between nucleus a and nucleus 

b. The prime on the sum as usual means omission of those terms for which a = b. 
The fourth term is the Coulomb potential energy of interaction between the 

electrons, and rij is the distance between the ith and jth electrons. For electronic 

calculations, the internuclear distances are treated as constant parameters, and so 

the third term can be omitted. This is in accord with the Born–Oppenheimer 

approximation as discussed at the beginning of Chap. 2. Magnetic interactions are 

relativistic corrections to the electrical interactions, and so are often small. They 

are omitted in (3.9). 

For the purpose of deriving the Hartree approximation, this N-electron 

Hamiltonian is unnecessarily cumbersome. It is more convenient to write it in the 
more abstract form 
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where 
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In (3.10a), H(i) is a one-particle operator (e.g. the kinetic energy), V(ij) is a two-

particle operator (e.g. the fourth term in (3.9)), and i refers to the electron with 

coordinate xi (or ri if you prefer). Spin does not need to be discussed for a while, 
but again we can regard xi in a wave function as including the spin of electron i if 
we so desire. 

Eigenfunctions of the many-electron Hamiltonian defined by (3.10a) will be 
sought by use of the variational principle. If there were no interaction between 

electrons and if the indistinguishability of electrons is forgotten, then the 

eigenfunction can be a product of N functions, each function being a function of 
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The many-electron Hamiltonian:
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In (3.10a), H(i) is a one-particle operator (e.g. the kinetic energy), V(ij) is a two-

particle operator (e.g. the fourth term in (3.9)), and i refers to the electron with 

coordinate xi (or ri if you prefer). Spin does not need to be discussed for a while, 
but again we can regard xi in a wave function as including the spin of electron i if 
we so desire. 

Eigenfunctions of the many-electron Hamiltonian defined by (3.10a) will be 
sought by use of the variational principle. If there were no interaction between 

electrons and if the indistinguishability of electrons is forgotten, then the 

eigenfunction can be a product of N functions, each function being a function of 

1. The first term in the Hamiltonian is the operator represenBng the kineBc
energy of all the electrons. Each different i corresponds to a different
electron.

2. The second term is the potenBal energy of interacBon of all of the
electrons with all of the nuclei, and rai is the distance from the ath
nucleus of Za to the ith electron.

3. The third term is the Coulomb potenBal energy of interacBon between
the nuclei. Rab is the distance between nucleus a and nucleus b. The
prime on the sum as usual means omission of those terms for which a = b.

4. The fourth term is the Coulomb potenBal energy of interacBon between
the electrons, and rij is the distance between the ith and jth electrons.



This N-electron Hamiltonian is unnecessarily cumbersome. It is more
convenient to write it with Born-Oppenheimer approximaBon,
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The ground-state properBes of a many-electron system are uniquely
determined by an electron density that depends on only three spaBal
coordinates. Hohenberg and Kohn set down the groundwork for reducing
the many-body problem of N electrons with 3N spaBal coordinates to
three spaBal coordinates, through the use of funcBonals of the electron
density n(r), so that 1) the ground state wavefuncBon Ψ0 is a unique
funcBonal of the ground state density n0(r);

A N-electron state described by a wavefuncBon Ψ(r1, …, rN) saBsfies the 
many-electron Bme-independent Schrödinger equaBon

Density Func<onal Theory



and 2) the ground-state energy E0 is a funcBonal of n0:

More generally, the contribuBon of the external potenBal 
can be wrihen explicitly in terms of the density n:

The effective single-particle potential can be written as

where V(r) is the external potenBal, the second term is the Hartree
term describing the electron–electron Coulomb repulsion, and the last
term VXC is the exchange–correlaBon potenBal. Here, VXC includes all
the many-parBcle interacBons.



which yields the orbitals φi that reproduce the density n(r) of the
original many-body system

Kohn–Sham equaBons of this auxiliary noninteracBng system can be
derived:

Usually one starts with an iniBal guess for n(r), then calculates the
corresponding Vs and solves the Kohn–Sham equaBons for the φi. From
these one calculates a new density and starts again. This procedure is
then repeated unBl convergence is reached.



For any k’ outside of the first Brillouin
zone, we can always find a reciprocal
laUce vector G so that k = k’ + G and
k lies in the first Brillouin zone.

Fermi Surfaces and Zone Schemes
The Fermi surface is the surface of constant energy ϵF in k space. The Fermi
surface separates the unfilled orbitals from the filled orbitals, at absolute
zero. The electrical properBes of the metal are determined by the volume
and shape of the Fermi surface, because the current is due to changes in
the occupancy of states near the Fermi surface.

223

chapter 9: fermi surfaces and metals

Few people would define a metal as “a solid
with a Fermi surface.” This may nevertheless be
the most meaningful definition of a metal one
can give today; it represents a profound advance
in the understanding of why metals behave as
they do. The concept of the Fermi surface, as 
developed by quantum physics, provides a pre-
cise explanation of the main physical properties
of metals.

A. R. Mackintosh

The Fermi surface is the surface of constant energy !F in k space. The
Fermi surface separates the unfilled orbitals from the filled orbitals, at 
absolute zero. The electrical properties of the metal are determined by the
volume and shape of the Fermi surface, because the current is due to changes
in the occupancy of states near the Fermi surface.

The shape may be very intricate as viewed in the reduced zone scheme
below and yet have a simple interpretation when reconstructed to lie near the
surface of a sphere. We exhibit in Fig. 1 the free electron Fermi surfaces con-
structed for two metals that have the face-centered cubic crystal structure:
copper, with one valence electron, and aluminum, with three. The free elec-
tron Fermi surfaces were developed from spheres of radius kF determined by
the valence electron concentration. The surface for copper is deformed by in-
teraction with the lattice. How do we construct these surfaces from a sphere?
The constructions require the reduced and also the periodic zone schemes.

Reduced Zone Scheme

It is always possible to select the wavevector index k of any Bloch function
to lie within the first Brillouin zone. The procedure is known as mapping the
band in the reduced zone scheme.

If we encounter a Bloch function written as "k!(r) " eik!#ruk!(r), with k!
outside the first zone, as in Fig. 2, we may always find a suitable reciprocal lat-
tice vector G such that k " k! $ G lies within the first Brillouin zone. Then

(1)

where uk(r) " e%iG#ruk!(r). Both e%iG#r and uk!(r) are periodic in the crystal lat-
tice, so uk(r) is also, whence "k(r) is of the Bloch form.

Even with free electrons it is useful to work in the reduced zone scheme,
as in Fig. 3. Any energy !k! for k! outside the first zone is equal to an !k in the
first zone, where k " k! $ G. Thus we need solve for the energy only in the

 " eik!ruk(r) " "k(r) ,
"k!(r)  " eik!!ruk!(r) " eik!r(e%iG!ruk!(r))
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Reduced, Extended and Periodic Zone Schemes



Brillouin Zones of Square LaFce
For a simple square laUce of atoms with interatomic distance a. Its
reciprocal laUce will also be square, with reciprocal laUce base vector of
length 2p/a.

1
2

2

2

2
33

3 3

3

33

3 2 p/a

2 p/a



Construc<on of Fermi Surfaces for Free Electrons

Fermi circle viewed
in the reduced zone
scheme

Brillouin zones of a square laUce in two
dimensions. The circle shown is a surface of
constant energy for free electrons; it will be
the Fermi surface for some parBcular value
of the electron concentra- Bon. The total
area of the filled region in k space de-
pends only on the electron concentraBon
and is inde- pendent of the interacBon of
the electrons with the laUce. The shape of
the Fermi surface depends on the laUce
interacBon, and the shape will not be an
exact circle in an actual laUce.
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Figure 5 (a) Construction in k space of the first three Brillouin zones of a square lattice. The
three shortest forms of the reciprocal lattice vectors are indicated as G1, G2, and G3. The lines
drawn are the perpendicular bisectors of these G’s. (b) On constructing all lines equivalent by
symmetry to the three lines in (a) we obtain the regions in k space which form the first three 
Brillouin zones. The numbers denote the zone to which the regions belong; the numbers here are
ordered according to the length of the vector G involved in the construction of the outer boundary
of the region.

3b

3a

2a

2b

2c

2d

Figure 6 Brillouin zones of a square lattice in two
dimensions. The circle shown is a surface of constant
energy for free electrons; it will be the Fermi surface
for some particular value of the electron concentra-
tion. The total area of the filled region in k space de-
pends only on the electron concentration and is inde-
pendent of the interaction of the electrons with the
lattice. The shape of the Fermi surface depends 
on the lattice interaction, and the shape will not be
an exact circle in an actual lattice. The labels within
the sections of the second and third zones refer to
Fig. 7.

3b

3a

2a

2b

2c

2d

1st zone 2nd zone 3rd zone

00 0

Figure 7 Mapping of the first, second, and third Brillouin zones in the reduced zone scheme.
The sections of the second zone in Fig. 6 are put together into a square by translation through an
appropriate reciprocal lattice vector. A different G is needed for each piece of a zone.
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From free electrons Fermi surfaces to nearly free electrons Fermi surfaces: 

Free electron Fermi circle in the third
zone drawn in the periodic zone scheme

Nearly Free Electrons Fermi Surfaces

• The interaction of the electron with the periodic potential of the crystal
creates energy gaps at the zone boundaries.

• Almost always the Fermi surface will intersect zone boundaries
perpendicularly.

• The crystal potential will round out sharp corners in the Fermi surfaces.
• The total volume enclosed by the Fermi surface depends only on the

electron concentration and is independent of the details of the lattice
interaction.

• The crystal potential will round out sharp corners in the Fermi surfaces.
• The total volume enclosed by the Fermi surface depends only on the 

electron concentration and is independent of the details of the lattice 
interaction.

We cannot make quantitative statements without calculation, but qualitatively
we expect the Fermi surfaces in the second and third zones of Fig. 8 to be
changed as shown in Fig. 10.

Freehand impressions of the Fermi surfaces derived from free electron
surfaces are useful. Fermi surfaces for free electrons are constructed by a pro-
cedure credited to Harrison, Fig. 11. The reciprocal lattice points are deter-
mined, and a free electron sphere of radius appropriate to the electron 
concentration is drawn around each point. Any point in k space that lies within
at least one sphere corresponds to an occupied state in the first zone. Points
within at least two spheres correspond to occupied states in the second zone,
and similarly for points in three or more spheres.

We said earlier that the alkali metals are the simplest metals, with weak in-
teractions between the conduction electrons and the lattice. Because the 
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gradk!

2nd zone 3rd zone

Figure 10 Qualitative impression of the effect of a weak periodic crystal potential on the Fermi
surface of Fig. 8. At one point on each Fermi surface we have shown the vector gradk!. In the sec-
ond zone the energy increases toward the interior of the figure, and in the third zone the energy
increases toward the exterior. The shaded regions are filled with electrons and are lower in energy
than the unshaded regions. We shall see that a Fermi surface like that of the third zone is elec-
tronlike, whereas one like that of the second zone is holelike.

Figure 11 Harrison construction of free elec-
tron Fermi surfaces on the second, third, and
fourth zones for a square lattice. The Fermi
surface encloses the entire first zone, which
therefore is filled with electrons.
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Brillouin zone (Fig. 7). Other reciprocal lattice vectors will shift the triangles
2b, 2c, 2d to other parts of the first zone, completing the mapping of the second
zone into the reduced zone scheme. The parts of the Fermi surface falling in
the second zone are now connected, as shown in Fig. 8.

A third zone is assembled into a square in Fig. 8, but the parts of the
Fermi surface still appear disconnected. When we look at it in the periodic
zone scheme (Fig. 9), the Fermi surface forms a lattice of rosettes.

Nearly Free Electrons

How do we go from Fermi surfaces for free electrons to Fermi surfaces
for nearly free electrons? We can make approximate constructions freehand by
the use of four facts:

• The interaction of the electron with the periodic potential of the crystal 
creates energy gaps at the zone boundaries.

• Almost always the Fermi surface will intersect zone boundaries perpendicu-
larly.

228

1st zone 2nd zone 3rd zone

Figure 8 The free electron Fermi surface of Fig. 6, as viewed in the reduced zone scheme. The
shaded areas represent occupied electron states. Parts of the Fermi surface fall in the second,
third, and fourth zones. The fourth zone is not shown. The first zone is entirely occupied.

Figure 9 The Fermi surface in the third zone as
drawn in the periodic zone scheme. The figure was
constructed by repeating the third zone of Fig. 8.
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Three Types of Orbits in Magne<c Field
Lorentz force on the electron:

v =	ℏ-1𝝯kϵ

alkalis have only one valence electron per atom, the first Brillouin zone bound-
aries are distant from the approximately spherical Fermi surface that fills one-
half of the volume of the zone. It is known by calculation and experiment that
the Fermi surface of Na is closely spherical, and that the Fermi surface for Cs
is deformed by perhaps 10 percent from a sphere.

The divalent metals Be and Mg also have weak lattice interactions and
nearly spherical Fermi surfaces. But because they have two valence electrons
each, the Fermi surface encloses twice the volume in k space as for the alkalis.
That is, the volume enclosed by the Fermi surface is exactly equal to that of a
zone, but because the surface is spherical it extends out of the first zone and
into the second zone.

ELECTRON ORBITS, HOLE ORBITS, AND OPEN ORBITS

We saw in Eq. (8.7) that electrons in a static magnetic field move on a
curve of constant energy on a plane normal to B. An electron on the Fermi
surface will move in a curve on the Fermi surface, because this is a surface of
constant energy. Three types of orbits in a magnetic field are shown in Fig. 12.

The closed orbits of (a) and (b) are traversed in opposite senses. Because
particles of opposite charge circulate in a magnetic field in opposite senses, we
say that one orbit is electronlike and the other orbit is holelike. Electrons in
holelike orbits move in a magnetic field as if endowed with a positive charge.
This is consistent with the treatment of holes in Chapter 8.

In (c) the orbit is not closed: the particle on reaching the zone boundary 
at A is instantly folded back to B, where B is equivalent to B! because 
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Open orbits

B

B
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dk
dt

dk
dt k

k
"k!"k! B out

of paper

Hole orbit Electron orbit

(a) (b) (c)

Figure 12 Motion in a magnetic field of the wavevector of an electron on the Fermi surface, in
(a) and (b) for Fermi surfaces topologically equivalent to those of Fig. 10. In (a) the wavevector
moves around the orbit in a clockwise direction; in (b) the wavevector moves around the orbit in a
counter-clockwise direction. The direction in (b) is what we expect for a free electron of charge
#e; the smaller k values have the lower energy, so that the filled electron states lie inside the
Fermi surface. We call the orbit in (b) electronlike. The sense of the motion in a magnetic field is
opposite in (a) to that in (b), so that we refer to the orbit in (a) as holelike. A hole moves as a par-
ticle of positive charge e. In (c) for a rectangular zone we show the motion on an open orbit in the
periodic zone scheme. An open orbit is topologically intermediate between a hole orbit and an
electron orbit.
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The work !" done on the electron by the electric field E in the time
interval !t is

(2)

We observe that

(3)

using (1). On comparing (2) with (3) we have

(4)

whence 
We may write (4) in terms of the external force F as

(5)

This is an important relation: in a crystal is equal to the external force
on the electron. In free space d(mv)/dt is equal to the force. We have not over-
thrown Newton’s second law of motion: the electron in the crystal is subject to
forces from the crystal lattice as well as from external sources.

The force term in (5) also includes the electric field and the Lorentz force
on an electron in a magnetic field, under ordinary conditions where the mag-
netic field is not so strong that it breaks down the band structure. Thus the
equation of motion of an electron of group velocity v in a constant magnetic
field B is

(CGS) (6)

where the right-hand side of each equation is the Lorentz force on the electron.
With the group velocity the rate of change of the wavevector is

(CGS) (7)

where now both sides of the equation refer to the coordinates in k space.
We see from the vector cross-product in (7) that in a magnetic field

an electron moves in k space in a direction normal to the direction of the gra-
dient of the energy ", so that the electron moves on a surface of constant
energy. The value of the projection kB of k on B is constant during the
motion. The motion in k space is on a plane normal to the direction of B, and
the orbit is defined by the intersection of this plane with a surface of constant
energy.

(SI)   dk
dt

 ! " e
!2 #k" $ Bdk

dt
 ! " e

!2c
 #k" $ B ;

v ! !"1gradk",

(SI)  !dk
dt

! "ev $ B!dk
dt

 ! "e
cv $ B ;

!dk/dt

!dk
dt

 ! F .

!dk/dt ! "eE.

!k ! "(eE/!)!t ,

!" ! (d"/dk)!k ! !vg !k ,

!" ! "eEvg !t .
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Mo8on in a magne8c field of the wavevector of an electron on the Fermi surface 

Orbits that enclose filled states are electron orbits. Orbits that en-
close empty states are hole orbits. Orbits that move from zone to
zone without closing are open orbits.



Schema<c Shape of a 3-D Fermi Surface
In 3D crystals the periodic potenBal distorts the shape of a Fermi sphere
in the vicinity of the BZ boundary. A schemaBc example for a simple
cubic laUce and a crude model E(k) funcBon is shown here:

Note: the Fermi circle does not completely fill the 1st BZ but makes
contact with the 1st BZ boundary along the [100] directions.

Constant energy surface in the Brillouin zone of a simple cubic laBce, for the 
assumed energy band 

For a simple cubic structure the nearest-neighbor atoms are at

(12)

so that (10) becomes

(13)

Thus the energies are confined to a band of width 12!. The weaker the over-
lap, the narrower is the energy band. A constant energy surface is shown 
in Fig. 15. For ka ! 1, "k "# " 6! # !k2a2. The effective mass is 

When the overlap integral ! is small, the band is narrow and the effec-
tive mass is high.

We considered one orbital of each free atom and obtained one band "k.
The number of orbitals in the band that corresponds to a nondegenerate
atomic level is 2N, for N atoms. We see this directly: values of k within the first
Brillouin zone define independent wavefunctions. The simple cubic zone has
"$/a $ kx $ $/a, etc. The zone volume is 8$3/a3. The number of orbitals
(counting both spin orientations) per unit volume of k space is V/4$3, so that
the number of orbitals is 2V/a3. Here V is the volume of the crystal, and 1/a3 is
the number of atoms per unit volume. Thus there are 2N orbitals.

For the fcc structure with eight nearest neighbors,

(14)

For the fcc structure with 12 nearest neighbors,

(15)

A constant energy surface is shown in Fig. 18.

"k % "# " 4!(cos 12 kya cos 12 kza # cos 12 kza cos 12 kxa # cos 12kxa cos 12 kya) .

"k % "# " 8! cos 12 kxa cos 12 kya cos 12 kza .

!2/2!a2.
m* %!

"k % "# " 2!(cos kxa # cos kya # cos kza) .

!m % (" a,0,0) ;  (0, " a,0) ;  (0,0, " a) ,
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ky

kz

kx

Figure 18 A constant energy surface of an fcc crystal
structure, in the nearest-neighbor tight-binding approx-
imation. The surface shown has " % "# # 2|!|.
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they are connected by a reciprocal lattice vector. Such an orbit is called an
open orbit. Open orbits have an important effect on the magnetoresistance.

Vacant orbitals near the top of an otherwise filled band give rise to hole-
like orbits, as in Figs. 13 and 14. A view of a possible energy surface in three
dimensions is given in Fig. 15.
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(a) (b)

Figure 13 (a) Vacant states at the corners of
an almost-filled band, drawn in the reduced
zone scheme. (b) In the periodic zone scheme
the various parts of the Fermi surface are con-
nected. Each circle forms a holelike orbit. The
different circles are entirely equivalent to
each other, and the density of states is that of a
single circle. (The orbits need not be true cir-
cles: for the lattice shown it is only required
that the orbits have fourfold symmetry.)

!

kykx

Figure 14 Vacant states near the top of an almost filled band in a two-
dimensional crystal. This figure is equivalent to Fig. 12a.

ky

ky

kz
kz

kx

kx

(a) (b)

kz

Figure 15 Constant energy surface in the Brillouin zone of a simple cubic lattice, for the assumed
energy band !k ! "" " 2#(cos kxa # cos kya # cos kza). (a) Constant energy surface ! ! "". 
The filled volume contains one electron per primitive cell. (b) The same surface exhibited in the
periodic zone scheme. The connectivity of the orbits is clearly shown. Can you find electron, hole,
and open orbits for motion in a magnetic field B ? (A. Sommerfeld and H. A. Bethe.)ẑ
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Shape of 3-D Energy Bands in a Real Metal

In 3D the energy bands are
plohed along the major
symmetry direcBons in the 1st

BZ. Many of the high symmetry
points on the 1st BZ boundary
are labeled by lehers.

The gamma point ( G ) is always
the zone center, where k = 0.

Free-electron 
bands in an fcc
crystal

Electron 
bands in Al



Thus,

Quan<za<on of Orbits in Magne<c Field
The momentum p of a particle (with charge q) in a magnetic field B is the
sum of two parts: B =	𝝯 × Aand

It is often possible to calculate band structures, cohesive energy, lattice
constants, and bulk moduli from first principles. In such ab initio pseudo-
potential calculations the basic inputs are the crystal structure type and the
atomic number, along with well-tested theoretical approximations to exchange
energy terms. This is not the same as calculating from atomic number alone,
but it is the most reasonable basis for a first-principles calculation. The results
of Yin and Cohen are compared with experiment in the table that follows.

Lattice Cohesive Bulk modulus 
constant (Å) energy (eV) (Mbar)

Silicon
Calculated 5.45 4.84 0.98
Experimental 5.43 4.63 0.99

Germanium
Calculated 5.66 4.26 0.73
Experimental 5.65 3.85 0.77

Diamond
Calculated 3.60 8.10 4.33
Experimental 3.57 7.35 4.43

EXPERIMENTAL METHODS IN FERMI SURFACE STUDIES

Powerful experimental methods have been developed for the determina-
tion of Fermi surfaces. The methods include magnetoresistance, anomalous
skin effect, cyclotron resonance, magneto-acoustic geometric effects, the
Shubnikow-de Haas effect, and the de Haas-van Alphen effect. Further infor-
mation on the momentum distribution is given by positron annihilation,
Compton scattering, and the Kohn effect.

We propose to study one method rather thoroughly. All the methods are
useful, but need detailed theoretical analysis. We select the de Haas-van
Alphen effect because it exhibits very well the characteristic periodicity in 1/B
of the properties of a metal in a uniform magnetic field.

Quantization of Orbits in a Magnetic Field

The momentum p of a particle in a magnetic field is the sum (Appendix G)
of two parts, the kinetic momentum and the potential momen-
tum or field momentum pfield ! qA/c, where q is the charge. The vector poten-
tial is related to the magnetic field by B ! curl A. The total momentum is

(CGS) (22)

In SI the factor c"1 is omitted.

p ! pkin # pfield ! !k # qA$c .

pkin ! mv ! !k

242
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The orbits in a magneBc field are quanBzed by the Bohr-Sommerfeld
relaBon

when n is an integer and 𝛾 is a phase correcBon that for free electrons has
the value 1/2. The equaBon of moBon of a parBcle of charge q in a
magneBc field is

Following the semiclassical approach of Onsager and Lifshitz, we assume
that the orbits in a magnetic field are quantized by the Bohr-Sommerfeld relation

(23)

when n is an integer and ! is a phase correction that for free electrons has the
value . Then

(24)

The equation of motion of a particle of charge q in a magnetic field is

(25a)

We integrate with respect to time to give

apart from an additive constant which does not contribute to the final result.
Thus one of the path integrals in (24) is

(25b)

where ! is the magnetic flux contained within the orbit in real space. We have
used the geometrical result that

The other path integral in (24) is

(25c)

by the Stokes theorem. Here d! is the area element in real space. The momen-
tum path integral is the sum of (25b) and (25c):

(26)

It follows that the orbit of an electron is quantized in such a way that the
flux through it is

(27)

The flux unit gauss cm2 or Tm2.
In the de Haas-van Alphen effect discussed below we need the area of the

orbit in wavevector space. We obtained in (27) the flux through the orbit in

2"!c"e # 4.14 $ 10% 7

!n # (n & !)(2"!c"e) .

!  p ! dr # % 

q
c  ! # (n & !)2"! .

q
c !A ! dr # 

q
c "curl A ! d" # 

q
c "  B ! d" # 

q
c  ! ,

!  r  $  dr # 2 $ (area enclosed by the orbit) .

!  !k ! dr # 

q
c !  r $ B ! dr # % 

q
cB ! !r $ dr # % 

2q
c  ! ,

!k # 

q
c r  $  B ,

!dk
dt

 # 

q
c  

dr
dt

 $ B .

!  p ! dr # !!k ! dr & 

q
c !A ! dr .

1
2

!  p ! dr # (n & !)2"h ,
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, a line element ∆r in the plane normal to B is related

to ∆k by ∆r = (ℏc/eB)∆k, so that the area Sn in k space is related to the
area An of the orbit in r space by

real space. By (25a) we know that a line element !r in the plane normal to B is
related to !k by so that the area Sn in k space is related to the
area An of the orbit in r space by

(28)

It follows that

(29)

from (27), whence the area of an orbit in k space will satisfy

(30)

In Fermi surface experiments we may be interested in the increment !B
for which two successive orbits, n and n " 1, have the same area in k space on
the Fermi surface. The areas are equal when

(31)

from (30). We have the important result that equal increments of 1/B repro-
duce similar orbits—this periodicity in 1/B is a striking feature of the magneto-
oscillatory effects in metals at low temperatures: resistivity, susceptibility, heat
capacity.

The population of orbits on or near the Fermi surface oscillates as B is var-
ied, causing a wide variety of effects. From the period of the oscillation we 
reconstruct the Fermi surface. The result (30) is independent of the gauge of
the vector potential used in the expression (22) for momentum; that is, p is not
gauge invariant, but Sn is. Gauge invariance is discussed further in Chapter 10
and in Appendix G.

De Haas-van Alphen Effect

The de Haas-van Alphen effect is the oscillation of the magnetic moment
of a metal as a function of the static magnetic field intensity. The effect can be
observed in pure specimens at low temperatures in strong magnetic fields: we
do not want the quantization of the electron orbits to be blurred by collisions,
and we do not want the population oscillations to be averaged out by thermal
population of adjacent orbits.

The analysis of the dHvA effect is given for absolute zero in Fig. 23. The
electron spin is neglected. The treatment is given for a two-dimensional (2D)
system; in 3D we need only multiply the 2D wavefunction by plane wave factors
exp(ikzz), where the magnetic field is parallel to the z axis. The area of an orbit in
kx, ky space is quantized as in (30). The area between successive orbits is

(32)!S # Sn $ Sn$1 # 2!eB%!c .
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ied, causing a wide variety of effects. From the period of the oscillation we 
reconstruct the Fermi surface. The result (30) is independent of the gauge of
the vector potential used in the expression (22) for momentum; that is, p is not
gauge invariant, but Sn is. Gauge invariance is discussed further in Chapter 10
and in Appendix G.

De Haas-van Alphen Effect

The de Haas-van Alphen effect is the oscillation of the magnetic moment
of a metal as a function of the static magnetic field intensity. The effect can be
observed in pure specimens at low temperatures in strong magnetic fields: we
do not want the quantization of the electron orbits to be blurred by collisions,
and we do not want the population oscillations to be averaged out by thermal
population of adjacent orbits.

The analysis of the dHvA effect is given for absolute zero in Fig. 23. The
electron spin is neglected. The treatment is given for a two-dimensional (2D)
system; in 3D we need only multiply the 2D wavefunction by plane wave factors
exp(ikzz), where the magnetic field is parallel to the z axis. The area of an orbit in
kx, ky space is quantized as in (30). The area between successive orbits is
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De Haas-van Alphen Effect

Assume the magneBc field is applied along the z axis, the area of an orbit in
kx, ky plane is quanBzed and the area between successive orbits is

The de Haas-van Alphen effect is the oscillaBon of the magneBc moment of
a metal as a funcBon of the staBc magneBc field intensity. The effect can be
observed in pure specimens at low temperatures in strong magneBc fields.

real space. By (25a) we know that a line element !r in the plane normal to B is
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(29)
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the vector potential used in the expression (22) for momentum; that is, p is not
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of a metal as a function of the static magnetic field intensity. The effect can be
observed in pure specimens at low temperatures in strong magnetic fields: we
do not want the quantization of the electron orbits to be blurred by collisions,
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The area in k space occupied by a single orbital is (2!/L)2, neglecting spin,
for a square specimen of side L. Using (32) we find that the number of free
electron orbitals that coalesce in a single magnetic level is

(33)

where as in Fig. 24. Such a magnetic level is called a Landau
level.

The dependence of the Fermi level on B is dramatic. For a system of N
electrons at absolute zero the Landau levels are entirely filled up to a magnetic
quantum number we identify by s, where s is a positive integer. Orbitals at the
next higher level s ! 1 will be partly filled to the extent needed to accommo-
date the electrons. The Fermi level will lie in the Landau level s ! 1 if there
are electrons in this level; as the magnetic field is increased the electrons move
to lower levels. When s ! 1 is vacated, the Fermi level moves down abruptly
to the next lower level s.

The electron transfer to lower Landau levels can occur because their 
degeneracy D increases as B is increased, as shown in Fig. 25. As B is 

" " eL2#2!!c,

D " (2!eB/!c)(L#2!)2
 " "B ,
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Figure 23 Explanation of the de Haas-van Alphen effect for a free electron gas in two dimen-
sions in a magnetic field. The filled orbitals of the Fermi sea in the absence of a magnetic field are
shaded in a and d. The energy levels in a magnetic field are shown in b, c, and e. In b the field has
a value B1 such that the total energy of the electrons is the same as in the absence of a magnetic
field: as many electrons have their energy raised as lowered by the orbital quantization in the mag-
netic field B1. When we increase the field to B2 the total electron energy is increased, because the
uppermost electrons have their energy raised. In e for field B3 the energy is again equal to that for
the field B " 0. The total energy is a minimum at points such as B1, B3, B5, . . . , and a maximum
near points such as B2, B4, . . . .
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Explanation of the de
Haas-van Alphen effect
for a free electron gas in
two dimensions in a
magnetic field with
B1 < B2 < B3.



The area between successive circles is

The number of free electron orbits collapsed into a Landau level is

Degeneracy of Orbits in Magne<c Field

increased there occur values of B at which the quantum number of the upper-
most filled level decreases abruptly by unity. At the critical magnetic fields 
labeled Bs no level is partly occupied at absolute zero, so that

(34)s!Bs ! N .
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Figure 24 (a) Allowed electron orbitals in two dimensions in absence of a magnetic field. (b) In a
magnetic field the points which represent the orbitals of free electrons may be viewed as re-
stricted to circles in the former kxky plane. The successive circles correspond to successive values
of the quantum number n in the energy (n " )k"c. The area between successive circles is

(CGS)

The angular position of the points has no significance. The number of orbitals on a circle is con-
stant and is equal to the area between successive circles times the number of orbitals per unit area
in (a), or neglecting electron spin.(2#eB/!c)(L/2#)2
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Figure 25 (a) The heavy line gives the number of particles in levels which are completely occu-
pied in a magnetic field B, for a two-dimensional system with N ! 50 and ! ! 0.50. The shaded
area gives the number of particles in levels partially occupied. The value of s denotes the quantum
number of the highest level which is completely filled. Thus at B ! 40 we have s ! 2; the levels 
n ! 1 and n ! 2 are filled and there are 10 particles in the level n ! 3. At B ! 50 the level n ! 3 is
empty. (b) The periodicity in 1/B is evident when the same points are plotted against 1/B.
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The area in k space occupied by a single orbital is (2!/L)2, neglecting spin,
for a square specimen of side L. Using (32) we find that the number of free
electron orbitals that coalesce in a single magnetic level is

(33)

where as in Fig. 24. Such a magnetic level is called a Landau
level.

The dependence of the Fermi level on B is dramatic. For a system of N
electrons at absolute zero the Landau levels are entirely filled up to a magnetic
quantum number we identify by s, where s is a positive integer. Orbitals at the
next higher level s ! 1 will be partly filled to the extent needed to accommo-
date the electrons. The Fermi level will lie in the Landau level s ! 1 if there
are electrons in this level; as the magnetic field is increased the electrons move
to lower levels. When s ! 1 is vacated, the Fermi level moves down abruptly
to the next lower level s.

The electron transfer to lower Landau levels can occur because their 
degeneracy D increases as B is increased, as shown in Fig. 25. As B is 
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Figure 23 Explanation of the de Haas-van Alphen effect for a free electron gas in two dimen-
sions in a magnetic field. The filled orbitals of the Fermi sea in the absence of a magnetic field are
shaded in a and d. The energy levels in a magnetic field are shown in b, c, and e. In b the field has
a value B1 such that the total energy of the electrons is the same as in the absence of a magnetic
field: as many electrons have their energy raised as lowered by the orbital quantization in the mag-
netic field B1. When we increase the field to B2 the total electron energy is increased, because the
uppermost electrons have their energy raised. In e for field B3 the energy is again equal to that for
the field B " 0. The total energy is a minimum at points such as B1, B3, B5, . . . , and a maximum
near points such as B2, B4, . . . .
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a value B1 such that the total energy of the electrons is the same as in the absence of a magnetic
field: as many electrons have their energy raised as lowered by the orbital quantization in the mag-
netic field B1. When we increase the field to B2 the total electron energy is increased, because the
uppermost electrons have their energy raised. In e for field B3 the energy is again equal to that for
the field B " 0. The total energy is a minimum at points such as B1, B3, B5, . . . , and a maximum
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and

increased there occur values of B at which the quantum number of the upper-
most filled level decreases abruptly by unity. At the critical magnetic fields 
labeled Bs no level is partly occupied at absolute zero, so that

(34)s!Bs ! N .
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Figure 24 (a) Allowed electron orbitals in two dimensions in absence of a magnetic field. (b) In a
magnetic field the points which represent the orbitals of free electrons may be viewed as re-
stricted to circles in the former kxky plane. The successive circles correspond to successive values
of the quantum number n in the energy (n " )k"c. The area between successive circles is

(CGS)

The angular position of the points has no significance. The number of orbitals on a circle is con-
stant and is equal to the area between successive circles times the number of orbitals per unit area
in (a), or neglecting electron spin.(2#eB/!c)(L/2#)2
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Figure 25 (a) The heavy line gives the number of particles in levels which are completely occu-
pied in a magnetic field B, for a two-dimensional system with N ! 50 and ! ! 0.50. The shaded
area gives the number of particles in levels partially occupied. The value of s denotes the quantum
number of the highest level which is completely filled. Thus at B ! 40 we have s ! 2; the levels 
n ! 1 and n ! 2 are filled and there are 10 particles in the level n ! 3. At B ! 50 the level n ! 3 is
empty. (b) The periodicity in 1/B is evident when the same points are plotted against 1/B.
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allowed electron orbitals in two dimensions

B = 0 B ≠ 0



Orbital Degeneracy Increases with B

increased there occur values of B at which the quantum number of the upper-
most filled level decreases abruptly by unity. At the critical magnetic fields 
labeled Bs no level is partly occupied at absolute zero, so that
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stant and is equal to the area between successive circles times the number of orbitals per unit area
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pied in a magnetic field B, for a two-dimensional system with N ! 50 and ! ! 0.50. The shaded
area gives the number of particles in levels partially occupied. The value of s denotes the quantum
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The oscillaBons occur at equal 
interval of 1/B so that

where S is the extremal area of
the Fermi surface normal to
the direcBon of B .

dHvA Oscilla<on
The magneBc moment μ of a system at absolute zero is given by μ =
−∂U/∂B. The moment here is an oscillatory funcBon of 1/B. This
oscillatory magneBc moment of the Fermi gas at low temperatures is the
de Haas-van Alphen effect.

The number of filled levels times the degeneracy at Bs must equal the number
of electrons N.

To show the periodicity of the energy as B is varied, we use the result 
that the energy of the Landau level of magnetic quantum number n is

where !c ! eB/m*c is the cyclotron frequency. The result for
En follows from the analogy between the cyclotron resonance orbits and the
simple harmonic oscillator, but now we have found it convenient to start
counting at n ! 1 instead of at n ! 0.

The total energy of the electrons in levels that are fully occupied is

(35)

where D is the number of electrons in each level. The total energy of the 
electrons in the partly occupied level s " 1 is

(36)

where sD is the number of electrons in the lower filled levels. The total energy
of the N electrons is the sum of (35) and (36), as in Fig. 26.

The magnetic moment " of a system at absolute zero is given by " !
# U/ B. The moment here is an oscillatory function of 1/B, Fig. 27. This os-
cillatory magnetic moment of the Fermi gas at low temperatures is the de 
Haas-van Alphen effect. From (31) we see that the oscillations occur at equal
intervals of 1/B such that
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Figure 26 The upper curve is the total electronic energy versus 1/B. The oscillations in the en-
ergy U may be detected by measurement of the magnetic moment, given by # U/ B. The thermal
and transport properties of the metal also oscillate as successive orbital levels cut through the
Fermi level when the field is increased. The shaded region in the figure gives the contribution to
the energy from levels that are only partly filled. The parameters for the figure are the same as for
Fig. 25, and we have taken the units of B such that B ! !!c.
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where S is the extremal area (see below) of the Fermi surface normal to the di-
rection of B. From measurements of !(1/B), we deduce the corresponding ex-
tremal areas S; thereby much can be inferred about the shape and size of the
Fermi surface.

Extremal Orbits. One point in the interpretation of the dHvA effect is sub-
tle. For a Fermi surface of general shape the sections at different values of kB

will have different periods. Here kB is the component of k along the direction
of the magnetic field. The response will be the sum of contributions from all
sections or all orbits. But the dominant response of the system comes from or-
bits whose periods are stationary with respect to small changes in kB. Such 
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Figure 27 At absolute zero the magnetic moment is given by " U B. The energy plotted in 
Fig. 26 leads to the magnetic moment shown here, an oscillatory function of 1/B. In impure speci-
mens the oscillations are smudged out in part because the energy levels are no longer sharply defined.
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Figure 28 The orbits in the section AA$ are ex-
tremal orbits: the cyclotron period is roughly con-
stant over a reasonable section of the Fermi surface.
Other sections such as BB$ have orbits that vary in
period along the section.
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Extremal Orbits in Magne<c Field
For a Fermi surface of general shape the secBons at different values of kB
will have different periods. Here kB is the component of k along the
direcBon of the magneBc field. The response will be the sum of
contribuBons from all secBons or all orbits. But the dominant response of
the system comes from orbits whose periods are staKonary with respect
to small changes in kB. Such orbits are called extremal orbits. Thus, in the
figure, the secBon AA’ dominates the observed cyclotron period.

where S is the extremal area (see below) of the Fermi surface normal to the di-
rection of B. From measurements of !(1/B), we deduce the corresponding ex-
tremal areas S; thereby much can be inferred about the shape and size of the
Fermi surface.

Extremal Orbits. One point in the interpretation of the dHvA effect is sub-
tle. For a Fermi surface of general shape the sections at different values of kB

will have different periods. Here kB is the component of k along the direction
of the magnetic field. The response will be the sum of contributions from all
sections or all orbits. But the dominant response of the system comes from or-
bits whose periods are stationary with respect to small changes in kB. Such 
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Figure 27 At absolute zero the magnetic moment is given by " U B. The energy plotted in 
Fig. 26 leads to the magnetic moment shown here, an oscillatory function of 1/B. In impure speci-
mens the oscillations are smudged out in part because the energy levels are no longer sharply defined.
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Figure 28 The orbits in the section AA$ are ex-
tremal orbits: the cyclotron period is roughly con-
stant over a reasonable section of the Fermi surface.
Other sections such as BB$ have orbits that vary in
period along the section.
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The orbits in the secBon AA’ are ex-
tremal orbits: the cyclotron period
is roughly constant over a
reasonable secBon of the Fermi
surface. Other secBons such as BB’
have orbits that vary in period
along the secBon.



Fermi Surface of Copper
Even if the free-electron Fermi sphere does not intersect a BZ boundary, its
shape can sBll be affected at points close to the boundary where the energy
bands begin to deviate from the free-electron parabolic shape. This is the
case with Cu.

Just a slightly perturbed free-electron sphere!

The free electron Fermi sphere of aluminum fills the first zone entirely
and has a large overlap into the second and third zones, Fig. 1. The third zone
Fermi surface is quite complicated, even though it is just made up of certain
pieces of the surface of the free electron sphere. The free electron model also
gives small pockets of holes in the fourth zone, but when the lattice potential is
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Figure 29 Fermi surface of copper, after Pippard. The
Brillouin zone of the fcc structure is the truncated octa-
hedron derived in Chapter 2. The Fermi surface makes
contact with the boundary at the center of the hexagonal
faces of the zone, in the [111] directions in k space. Two
“belly” extremal orbits are shown, denoted by B; the 
extremal “neck” orbit is denoted by N.

Figure 30 Dog’s bone orbit of an electron on
the Fermi surface of copper or gold in a mag-
netic field. This orbit is classified as holelike be-
cause the energy increases toward the interior of
the orbit.

45.0 kG 45.5 kG 46.0 kG

Figure 31 De Haas-van Alphen effect in gold with B || [110]. The oscillation is from the dog’s
bone orbit of Fig. 30. The signal is related to the second derivative of the magnetic moment with
respect to field. The results were obtained by a field modulation technique in a high-homogeneity
superconducting solenoid at about 1.2 K. (Courtesy of I. M. Templeton.)
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Fermi Surface of Gold

The free electron Fermi sphere of aluminum fills the first zone entirely
and has a large overlap into the second and third zones, Fig. 1. The third zone
Fermi surface is quite complicated, even though it is just made up of certain
pieces of the surface of the free electron sphere. The free electron model also
gives small pockets of holes in the fourth zone, but when the lattice potential is
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Figure 29 Fermi surface of copper, after Pippard. The
Brillouin zone of the fcc structure is the truncated octa-
hedron derived in Chapter 2. The Fermi surface makes
contact with the boundary at the center of the hexagonal
faces of the zone, in the [111] directions in k space. Two
“belly” extremal orbits are shown, denoted by B; the 
extremal “neck” orbit is denoted by N.

Figure 30 Dog’s bone orbit of an electron on
the Fermi surface of copper or gold in a mag-
netic field. This orbit is classified as holelike be-
cause the energy increases toward the interior of
the orbit.

45.0 kG 45.5 kG 46.0 kG

Figure 31 De Haas-van Alphen effect in gold with B || [110]. The oscillation is from the dog’s
bone orbit of Fig. 30. The signal is related to the second derivative of the magnetic moment with
respect to field. The results were obtained by a field modulation technique in a high-homogeneity
superconducting solenoid at about 1.2 K. (Courtesy of I. M. Templeton.)
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respect to field. The results were obtained by a field modulation technique in a high-homogeneity
superconducting solenoid at about 1.2 K. (Courtesy of I. M. Templeton.)
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Dog’s bone orbit of an
electron on the Fermi
surface of copper or gold
in a magneBc field.

De Haas-van Alphen effect in gold with
B || [110]. The oscillaBon is from the
dog’s bone orbit of the le[ figure.



Photoemission Process

Here, i, j denote the initial
and final bands, k||, kz are
the components of the
wave vector in the initial
and the final state, and E(i),
Evac are the energies of the
initial state and the
vacuum level.

!"#"$ %!$$ &$'"( ))()*+( ,-$ './/$0" '#//1$2 34 $5$'"/60! 67 # 8#/"1'.5#/ 91:
0$"1' $0$/;4 !910 10"6 # 8#/"1'.5#/ 21/$'"160 ;1<$0 34 "-$ =#<$ <$'"6/ !

!$5"
!! 1!

8/686/"160#5 "6>

"8-"!
"$5#
!! !!910# $

!

#! $

!

%&

$! !!!! %&

!

!"!#! !!!! %&

"
#

#

#

#

#

#

?

% !"!910 & !<#' ' !"1#"!!!" %&# ' '##!"!!! ' !
"$5#
!! #$

"@$)#

A$/$B #( $ 2$06"$ "-$ 101"1#5 #02 710#5 3#02!B !CCB %& #/$ "-$ '6D860$0"! 67
"-$ =#<$ <$'"6/ 10 "-$ 101"1#5 #02 "-$ 710#5 !"#"$B #02 !%1+B !<#' #/$ "-$
$0$/;1$! 67 "-$ 101"1#5 !"#"$ #02 "-$ <#'..D 5$<$5( ,-$ D#"/1E $5$D$0" 1! #0
10"$;/#5 6<$/ "-$ .01" !./7#'$ '$55 #02 6<$/ "-$ 1076/D#"160 2$8"- #560; "-$
&:'66/210#"$( ,-$ 910$"1' $0$/;4 67 "-$ 8-6"6$D1""$2 $5$'"/60 "-$/$76/$ '#/:
/1$! "-$ 1076/D#"160 60 "-$ $0$/;4 67 "-$ 101"1#5 !"#"$ 34 <1/".$ 67 "-$ $0$/;4
'60!$/<#"160 "$/D 10 %@()+B

!910 ( '!<#' & !"1#"!!!" %&# & '#$ "@$?#

,-$ 8#/#55$5 '6D860$0" 67 "-$ !:<$'"6/ 1! '60!$/<$2 76/ 8$/1621' !./7#'$!B #!
"-$ $5$'"/60 =#<$ 7.0'"160 10!12$ -#! "6 8-#!$:D#"'- "6 "-$ =#<$ 7.0'"160
6."!12$ 10 6/2$/ "6 -#<$ "-$ =#<$ 7.0'"160 '60"10.6.! #" "-$ !./7#'$( ,-$
!##:<$'"6/ 67 !./7#'$ !"#"$! 1! "-$/$76/$ 7.554 2$"$/D10$2 34 "-$ !##:<$'"6/ 67

F#0$5 @ F-6"6$D1!!160 &8$'"/6!'684 )GH

!
"
#
$%
&

k 
(ext)

k||
(ext)= k||

(int)

k  

(int)

E

k

E(i)(k)

EF

Evac

Ekin

E 
(f)(k)

hν

(a) (b)

'()* &*+* I55.!"/#"160 67 "-$ 8-6"6$D1!!160 8/6'$!!( %"+ J 8-6"60 67 $0$/;4 '# $E'1"$! #0
$5$'"/60 7/6D "-$ 101"1#5 !"#"$ !%1+%%+ "6 "-$ 710#5 !"#"$ !%7+%%+ #36<$ "-$ <#'..D 5$<$5 !<#'(
,-$ 910$"1' $0$/;4 67 "-$ 8-6"6$D1""$2 $5$'"/60 1! !910 K !%7+%%+ L !<#'( %,+ ,-$ =#<$ <$':
"6/! 67 "-$ $5$'"/60 10!12$ !%10"+ #02 6."!12$ !%$E"+ -#<$ "-$ !#D$ 8#/#55$5 '6D860$0"! !10'$
"-$ !8#"1#5 8-#!$ 1$!!!!! -#! "6 3$ 12$0"1'#5 "6 D#9$ "-$ =#<$ 7.0'"160 '60"10.6.! #" #04
;1<$0 8610" $!! 67 "-$ !./7#'$

hν

!"#"$ %!$$ &$'"( ))()*+( ,-$ './/$0" '#//1$2 34 $5$'"/60! 67 # 8#/"1'.5#/ 91:
0$"1' $0$/;4 !910 10"6 # 8#/"1'.5#/ 21/$'"160 ;1<$0 34 "-$ =#<$ <$'"6/ !

!$5"
!! 1!

8/686/"160#5 "6>

"8-"!
"$5#
!! !!910# $

!

#! $

!

%&

$! !!!! %&

!

!"!#! !!!! %&

"
#

#

#

#

#

#

?

% !"!910 & !<#' ' !"1#"!!!" %&# ' '##!"!!! ' !
"$5#
!! #$

"@$)#

A$/$B #( $ 2$06"$ "-$ 101"1#5 #02 710#5 3#02!B !CCB %& #/$ "-$ '6D860$0"! 67
"-$ =#<$ <$'"6/ 10 "-$ 101"1#5 #02 "-$ 710#5 !"#"$B #02 !%1+B !<#' #/$ "-$
$0$/;1$! 67 "-$ 101"1#5 !"#"$ #02 "-$ <#'..D 5$<$5( ,-$ D#"/1E $5$D$0" 1! #0
10"$;/#5 6<$/ "-$ .01" !./7#'$ '$55 #02 6<$/ "-$ 1076/D#"160 2$8"- #560; "-$
&:'66/210#"$( ,-$ 910$"1' $0$/;4 67 "-$ 8-6"6$D1""$2 $5$'"/60 "-$/$76/$ '#/:
/1$! "-$ 1076/D#"160 60 "-$ $0$/;4 67 "-$ 101"1#5 !"#"$ 34 <1/".$ 67 "-$ $0$/;4
'60!$/<#"160 "$/D 10 %@()+B

!910 ( '!<#' & !"1#"!!!" %&# & '#$ "@$?#

,-$ 8#/#55$5 '6D860$0" 67 "-$ !:<$'"6/ 1! '60!$/<$2 76/ 8$/1621' !./7#'$!B #!
"-$ $5$'"/60 =#<$ 7.0'"160 10!12$ -#! "6 8-#!$:D#"'- "6 "-$ =#<$ 7.0'"160
6."!12$ 10 6/2$/ "6 -#<$ "-$ =#<$ 7.0'"160 '60"10.6.! #" "-$ !./7#'$( ,-$
!##:<$'"6/ 67 !./7#'$ !"#"$! 1! "-$/$76/$ 7.554 2$"$/D10$2 34 "-$ !##:<$'"6/ 67

F#0$5 @ F-6"6$D1!!160 &8$'"/6!'684 )GH

!
"
#
$%
&

k 
(ext)

k||
(ext)= k||

(int)

k  

(int)

E

k

E(i)(k)

EF

Evac

Ekin

E 
(f)(k)

hν

(a) (b)

'()* &*+* I55.!"/#"160 67 "-$ 8-6"6$D1!!160 8/6'$!!( %"+ J 8-6"60 67 $0$/;4 '# $E'1"$! #0
$5$'"/60 7/6D "-$ 101"1#5 !"#"$ !%1+%%+ "6 "-$ 710#5 !"#"$ !%7+%%+ #36<$ "-$ <#'..D 5$<$5 !<#'(
,-$ 910$"1' $0$/;4 67 "-$ 8-6"6$D1""$2 $5$'"/60 1! !910 K !%7+%%+ L !<#'( %,+ ,-$ =#<$ <$':
"6/! 67 "-$ $5$'"/60 10!12$ !%10"+ #02 6."!12$ !%$E"+ -#<$ "-$ !#D$ 8#/#55$5 '6D860$0"! !10'$
"-$ !8#"1#5 8-#!$ 1$!!!!! -#! "6 3$ 12$0"1'#5 "6 D#9$ "-$ =#<$ 7.0'"160 '60"10.6.! #" #04
;1<$0 8610" $!! 67 "-$ !./7#'$

!"#"$ %!$$ &$'"( ))()*+( ,-$ './/$0" '#//1$2 34 $5$'"/60! 67 # 8#/"1'.5#/ 91:
0$"1' $0$/;4 !910 10"6 # 8#/"1'.5#/ 21/$'"160 ;1<$0 34 "-$ =#<$ <$'"6/ !

!$5"
!! 1!

8/686/"160#5 "6>

"8-"!
"$5#
!! !!910# $

!

#! $

!

%&

$! !!!! %&

!

!"!#! !!!! %&

"
#

#

#

#

#

#

?

% !"!910 & !<#' ' !"1#"!!!" %&# ' '##!"!!! ' !
"$5#
!! #$

"@$)#

A$/$B #( $ 2$06"$ "-$ 101"1#5 #02 710#5 3#02!B !CCB %& #/$ "-$ '6D860$0"! 67
"-$ =#<$ <$'"6/ 10 "-$ 101"1#5 #02 "-$ 710#5 !"#"$B #02 !%1+B !<#' #/$ "-$
$0$/;1$! 67 "-$ 101"1#5 !"#"$ #02 "-$ <#'..D 5$<$5( ,-$ D#"/1E $5$D$0" 1! #0
10"$;/#5 6<$/ "-$ .01" !./7#'$ '$55 #02 6<$/ "-$ 1076/D#"160 2$8"- #560; "-$
&:'66/210#"$( ,-$ 910$"1' $0$/;4 67 "-$ 8-6"6$D1""$2 $5$'"/60 "-$/$76/$ '#/:
/1$! "-$ 1076/D#"160 60 "-$ $0$/;4 67 "-$ 101"1#5 !"#"$ 34 <1/".$ 67 "-$ $0$/;4
'60!$/<#"160 "$/D 10 %@()+B

!910 ( '!<#' & !"1#"!!!" %&# & '#$ "@$?#

,-$ 8#/#55$5 '6D860$0" 67 "-$ !:<$'"6/ 1! '60!$/<$2 76/ 8$/1621' !./7#'$!B #!
"-$ $5$'"/60 =#<$ 7.0'"160 10!12$ -#! "6 8-#!$:D#"'- "6 "-$ =#<$ 7.0'"160
6."!12$ 10 6/2$/ "6 -#<$ "-$ =#<$ 7.0'"160 '60"10.6.! #" "-$ !./7#'$( ,-$
!##:<$'"6/ 67 !./7#'$ !"#"$! 1! "-$/$76/$ 7.554 2$"$/D10$2 34 "-$ !##:<$'"6/ 67

F#0$5 @ F-6"6$D1!!160 &8$'"/6!'684 )GH

!
"#
$%
&

k 
(ext)

k||
(ext)= k||

(int)

k  

(int)

E

k

E(i)(k)

EF

Evac

Ekin

E 
(f)(k)

hν

(a) (b)

'()* &*+* I55.!"/#"160 67 "-$ 8-6"6$D1!!160 8/6'$!!( %"+ J 8-6"60 67 $0$/;4 '# $E'1"$! #0
$5$'"/60 7/6D "-$ 101"1#5 !"#"$ !%1+%%+ "6 "-$ 710#5 !"#"$ !%7+%%+ #36<$ "-$ <#'..D 5$<$5 !<#'(
,-$ 910$"1' $0$/;4 67 "-$ 8-6"6$D1""$2 $5$'"/60 1! !910 K !%7+%%+ L !<#'( %,+ ,-$ =#<$ <$':
"6/! 67 "-$ $5$'"/60 10!12$ !%10"+ #02 6."!12$ !%$E"+ -#<$ "-$ !#D$ 8#/#55$5 '6D860$0"! !10'$
"-$ !8#"1#5 8-#!$ 1$!!!!! -#! "6 3$ 12$0"1'#5 "6 D#9$ "-$ =#<$ 7.0'"160 '60"10.6.! #" #04
;1<$0 8610" $!! 67 "-$ !./7#'$



!"# $"%!%#&'!!#( #)#*!+%, -.'/0 102340 5"# 6#+!'*7) *%&$%,#,! %8 !"# !96#*!%+
%8 3:); <!7!#< ="'*" '< )%<! ', !"# !+7,</+#<<'%, %8 !"# <:+87*# $%!#,!'7)
37++'#+ &7> 3# +#*%6#+#( 3> <$#*'7) !#*",'?:#<0

@,# !#*",'?:# '< !+'7,/:)7!'%, 7< ')):<!+7!#( ='!" .'/0 10A0 B <#+'#< %8
$"%!%#&'<<'%, <$#*!+7 8+%& 7 C:-DDE4 <:+87*# ', !"# FDDEG H%,# 7< 8:,*!'%,
%8 7,/)# ! ='!" +#<$#*! !% <:+87*# ,%+&7) '< *%&$7+#( !% !"# #&'<<'%,
<$#*!+:& ', !"# FDDDG ('+#*!'%, %, 7 C:-DDD4 <:+87*#0 I, !"# )7!!#+ *7<#J !"#
',!#+,7) ! 6#*!%+ %8 !"# #&'!!',/ #)#*!+%, <!7!#< '< 7)%,/ FDDDG 3#*7:<# %8 !KK

*%,<#+67!'%,0 L"')# %, !"# C:-DDE4 <:+87*# !"# FDDDG ('+#*!'%, &7;#< 7,
7,/)# %8 ! M 2N0O! ='!" !"# <:+87*# ,%+&7)J $#7;< 7! !"# <7&# ','!'7) <!7!#
#,#+/'#< 7< %, C:-DDD4 7+# 8%:,( 7! ! M NO0N! -.'/0 10A4 3#*7:<# %8 !"#
+#8+7*!'%, %8 !"# #)#*!+%,< ="#, !"#> !+76#+<# !"# <:+87*# -',<#+! ', .'/0 10A40
L# ,%= *7)*:)7!# !"# &%(:):< %8 !"# ! 6#*!%+ %8 !"# ','!'7) <!7!#< !

!',!"
DDD

&7;',/ :<# %8 !"# *%,<#+67!'%, %8 !"# $7+7))#) *%&$%,#,! %8 !"# =76#
6#*!%+ -.'/0 102J ',<#+! ', .'/010A4P

!
!',!"
!! " !

##Q!$
!! % !

#',!$
DDD <', 2N& " !##Q!$ <', NO"N&" #1"2$

DRR S7,#) 1 S"%!%#&'<<'%, T$#*!+%<*%$>

!
"
#
$%
&

–4 –3 –2 –1 0

Binding energy of electrons E − EF (eV)

P
h
o
to

e
m

is
si

o
n
 in

te
n
si

ty
 (

a
rb

. 
u
n
its

)

(110) surface

[110]

35.3°

[111]

52.5°

k||

(111) surface
[111] direction

(110) surface
θ = 52.5°

(110) surface
θ = 35.3° ([111])

'()* &*+* S"%!%#&'<<'%, <$#*9
!+7 %8 C:-DDD4 7,( C:-DDE4
<:+87*#< F102G <#+6',/ !% #<9
!73)'<" !"# =76# 6#*!%+ !DDD

8%+ 3:); #)#*!+%,'* <!7!#<P !"#
!=% $+%&',#,! $#7;< 7$$#7+9
',/ ', !"# <$#*!+7 7)%,/ FDDDG
%, C:-DDD4 7+# 8%:,( 7! 7,
7,/)# %8 ! M NO0N! ', !"#
FDDEG H%,# %, C:-DDE40 5"#
&7/,'!:(# %8 !DDD '< (#!#+9
&',#( 3> *%,<'(#+',/ !KK *%,9
<#+67!'%, -10240 -B8!#+ C%:+!<
7,( U:V 8,#+ F12G4

Photoemission spectra of Cu(111)
and Cu(110) surfaces serving to
establish the wave vector k111 for
bulk electronic states: the two
prominent peaks appearing in the
spectra along [111] on Cu(111)
are found at an angle of 𝜃 = 52.5°
in the [110] zone on Cu(110). The
magnitude of k111 is determined
by considering k|| conservaBon.

Photoemission Spectra of Cu(111) and Cu(110)
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Angle-Resolved PhotoEmission Spectroscopy 
(ARPES)
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Concentric Hemispherical Analyzer (CHA)

ΔE/E0 = s/ R0

s: mean slit width; R0: mean radius



Problems

1.

2.

Brillouin zones of two-dimensional divalent metal. A two-dimensional
metal in the form of a square laUce has two conducBon electrons per
atom. In the al- most free electron approximaBon, sketch carefully the
electron and hole energy surfaces. For the electrons choose a zone
scheme such that the Fermi surface is shown as closed.

De Haas-van Alphen period of potassium. (a) Calculate the period
∆(1/B) expected for potassium on the free electron model. (b) What is
the area in real space of the extremal orbit, for B = 10 kG = 1 T? The
same period applies to oscillaBons in the electrical resisBvity, known as
the Shubnikov-de Haas effect.



Problems

3. Landau levels. The vector potenBal of a uniform magneBc field Bzˆ is
A = −Byxˆ in the Landau gauge. The hamiltonian of a free electron
without spin is

The mass at the conduction band edge in a narrow gap semiconductor is often
dominated by the effect of the valence band edge, whence

(41)

where the sum is over the valence bands; Eg is the energy gap. For given matrix 
elements, small gaps lead to small masses.

9. Wannier functions. The Wannier functions of a band are defined in terms of
the Bloch functions of the same band by

(42)

where rn is a lattice point. (a) Prove that Wannier functions about different lattice
points n,m are orthogonal:

(43)

This orthogonality property makes the functions often of greater use than atomic
orbitals centered on different lattice sites, because the latter are not generally or-
thogonal. (b) The Wannier functions are peaked around the lattice sites. Show
that for !k ! N"1/2 eikx u0(x) the Wannier function is

for N atoms on a line of lattice constant a.

10. Open orbits and magnetoresistance. We considered the transverse magneto-
resistance of free electrons in Problem 6.9 and of electrons and holes in Problem
8.5. In some crystals the magnetoresistance saturates except in special crystal ori-
entations. An open orbit carries current only in a single direction in the plane
normal to the magnetic field; such carriers are not deflected by the field. In the
arrangement of Fig. 6.14, let the open orbits be parallel to kx; in real space these
orbits carry current parallel to the y axis. Let "yy ! s"0 be the conductivity of the
open orbits; this defines the constant s. The magnetoconductivity tensor in the
high field limit #c$ # 1 is

with Q ! #c$. (a) Show that the Hall field is Ey ! "Ex/sQ. (b) Show that the ef-
fective resistivity in the x direction is % ! (Q2/"0)(s/s $ 1), so that the resistivity
does not saturate, but increases as B2.

11. Landau levels. The vector potential of a uniform magnetic field is A !

"By in the Landau gauge. The hamiltonian of a free electron without spin is

H ! "(!2/2m)(%2/%y2
 $ %2/%z2) $ (1/2m)["i!%/%x " eyB/c]2 .

x̂
Bẑ

"0 !Q" 2

Q" 1

0

"Q" 1

s
0

0
0
1" ,

w(x " xn) ! u0(x)
sin &(x " xn)&a

&(x " xn)&a
 ,

# dV w*(r " rn)w(r " rm) ! 0 ,  n " m .

w(r " rn) ! N" 1/2 $
k

 exp(" ik ! rn) !k(r) ,

m
m*

 % 

2
mEg

  $
'

&'c & p &'( &2 ,
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We will look for an eigenfuncBon of the wave equaBon Hψ = ϵψ in the
form

We will look for an eigenfunction of the wave equation H! ! "! in the form

(a) Show that #(y) satisfies the equation

where $c ! eB/mc and (b) Show that this is the wave equation of a 
harmonic oscillator with frequency $c, where

"n ! (n " 

1
2)!$c " !2kz

2/2m .

y0 ! c!kx#eB.

(!2/2m)d2#/dy2
 " [" $ (!2kz

2/2m) $ 

1
2 m$c

2(y $ y0)2]# ! 0 ,

! ! #(y) exp[i(kxx " kzz)] .
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(a) Show that χ(y) saBsfies the equaBon 

We will look for an eigenfunction of the wave equation H! ! "! in the form

(a) Show that #(y) satisfies the equation

where $c ! eB/mc and (b) Show that this is the wave equation of a 
harmonic oscillator with frequency $c, where

"n ! (n " 

1
2)!$c " !2kz
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! ! #(y) exp[i(kxx " kzz)] .
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(b) Show that this is the wave equaBon of a harmonic oscillator with 
frequency ωc, where 

where ωc = eB/mc and y0 = cℏkx/eB. 

We will look for an eigenfunction of the wave equation H! ! "! in the form

(a) Show that #(y) satisfies the equation

where $c ! eB/mc and (b) Show that this is the wave equation of a 
harmonic oscillator with frequency $c, where

"n ! (n " 

1
2)!$c " !2kz

2/2m .

y0 ! c!kx#eB.

(!2/2m)d2#/dy2
 " [" $ (!2kz
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1
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2(y $ y0)2]# ! 0 ,
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